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1 Background

This research will analyze an algorithm for integer factorization based on the use of continued

fractions and quadratic forms, primarily intending to produce a runtime analysis of the

algorithm but also proving several valuable results about continued fractions. This paper

provides some background to the problem and a description of the algorithm.

1



There are several different kinds of factorization; this research will focus on integer fac-

torization. Consider an integer N . Factorization is the process of finding integers p and q

greater than 1 such that N = pq. Complete factorization would require repeating this pro-

cess for both p and q until all of the remaining factors are prime (i.e irreducible). However,

if an algorithm can be developed to quickly factor N into p and q, the same algorithm can

be used over again on p and q. For example, it is easy to see that 105 = 5 · 21 and then

repeat to factor 21. From here, you would see that since 21 = 3 · 7, 105 = 5 · 3 · 7. Although

in this simple case, the complete factorization is easy to find, this task becomes much harder

for large numbers. In number theory, the factors of a number dictate many of the charac-

teristics of the number. For example, Euler’s φ function, which tells how many numbers

less than N are relatively prime1 to N , can be directly calculated from the complete fac-

torization. In the example above, there are (5 − 1)(3 − 1)(7 − 1) = 48 integers less than

105 that are relatively prime to 105. Also, determining whether a number is a quadratic

residue (i.e. the square of another number modulo N), can be determined directly using

Gauss’s quadratic reciprocity law if the complete factorization of N is known. In the

above example, 192 = 361 = 46 + 3 · 105, so that 46 is a quadratic residue modulo 105

with square root 19. One would represent this as 192 ≡ 46 (mod 105). With the complete

factorization, we can use the law of reciprocity to analyze 46 modulo 3,5, and 7 to determine

whether or not 46 is a quadratic residue without actually having to find its square root first

[Ga]. Therefore, the ability to factor large numbers has been a focus of research for a variety

of theoretical reasons.

One practical application of factorization is cryptography. In one system of encrypting

a message, the RSA system, the cryptographer chooses a number that is the product of

two large numbers p and q that are presumed to be prime: N = pq. Then an exponent

e is chosen such that e is relatively prime to (p − 1)(q − 1). Although there are several

variations, in the normal public key version, N and e are made public. The user of the RSA

1Terms in bold are included in the glossary.
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system then privately calculates d, the inverse of e modulo (p − 1)(q − 1). Anyone is able

to encrypt something to him by raising blocks of the message to the power e, modulo N:

c ≡ me (mod N), where m is the original message and c is the encrypted message. Then,

the recipient is able to decrypt by evaluating m ≡ cd (mod N) [Riv]. As long as someone

intercepting the message is unable to factor N , it is usually impossible to obtain d, so that

the message cannot be broken. The security of this system and its variations depends highly

on whether or not N can be factored [T]. Although fast factorization would be a threat

to this system, the advance in number theory produced by fast factorization would likely

provide a number of alternative secure systems.

In addition to the potential for alternative secure systems, there is also the possibility

that a fast factorization algorithm might not work for all numbers. Therefore, there could

be some numbers for which factorization might be easier than others. If there are classes

of numbers that a fast factorization algorithm does not work on, this would allow designers

of the algorithm to increase their security by relying more on these numbers. Regardless

of whether or not the algorithm works for all numbers or provides alternative systems, for

security purposes it is necessary to understand the strengths and weaknesses of the system.

Up to now we have referred to fast factorization in general terms, but there are several

different ways to classify the speed of an algorithm. Let N be the number to factor. Let

n = log2 N , the number of bits in N . An algorithm’s run time is called “exponential”

if it increases exponentially with the number of bits n. “Linear” refers to an algorithm

where the time increases proportionally to the number of bits2. “Polynomial” refers to

an algorithm for which the time required is some polynomial function of n. Thus, linear

time is a special case of polynomial time. There are some algorithms that fall in between

polynomial and exponential time and are referred to as sub-exponential. Currently, the best

general purpose factorization algorithm is the general number field sieve, with a runtime of

exp( 4
32/3 n

1/3(log n)2/3) [L]. The 1
3

in the exponent of n has a very significant effect on the

2Since n = log2 N , so that such a runtime is logarithmic in N , this is often referred to as logarithmic,
resulting in a certain amount of confusion.
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runtime of the algorithm, as this determines that the algorithm is sub-exponential.

Many of the other factorization algorithms are important for theoretical reasons. One

tool used by several different algorithms is the continued fraction expression for
√

N , where

N is the number to be factored. This expression is calculated recursively:

x0 =
√

N, b0 = bx0c (the floor of x0).

∀i ≥ 1 xi =
1

xi−1 − bi−1
bi = bxic (1)

√
N = b0 +

1

b1 + 1
b2+...

It is important to note that at each step in the continued fraction expansion, it is possible

to define integers Pi and Qi such that xi − bi =
√

N−Pi

Qi
, where P 2

i ≡ N (mod Qi). Also, in

the expansion of
√

N , ∀i, (−1)iQiQ0 is a quadratic residue modulo N . Both of these were

proven in Hans Riesel [Rie] and are included in Theorem 1 of section 6. The sequence of Qi’s

are thus referred to as pseudo-squares. The sequence of Pi’s are referred to as residues,

since they are produced at each step by reducing the fraction by some integer. Several

algorithms, most notably the Morrison - Brillhart algorithm, rely on the quadratic residues

in the sequence of pseudo-squares. In 1982 Daniel Shanks developed but never published3

an algorithm called Square Forms Factorization, or SQUFOF, which takes a more direct

approach to using these quadratic residues.

3He did however refer to it several times. See p 172 of [S].
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For SQUFOF, when the algorithm encoun-
x0 ←

√
N b0 ← bx0c

while Qi 6= perfect square
Apply equation(1)

Reduce xi to the form
√

N−Pi

Qi

x′
0 ←

√
N+Pi√

Qi

while Pi 6= Pi−1

Apply equation (1) and reduce

gcd(N, Pi), the greatest
common divisor, is a nontrivial
factor.

Figure 1: SQUFOF algorithm

tered a perfect square, it started a new se-

quence from that term by taking the conju-

gate of the numerator and the square root

of the denominator and then continued the

expansion until a residue repeated consecu-

tively (Figure 1). At this point, the repeated

residue provided a factor of N.

For example, let N be 1353:

x0 =
√

1353 b0 = 36

x1 =
1√

1353− 36
=

√
1353 + 36

57
= 1 +

√
1353− 21

57

x2 =
57√

1353− 21
=

√
1353 + 21

16
= 3 +

√
1353− 27

16
(2)

The second fraction in each step is found by rationalizing. At each step, the integers

taken out are bi and the remaining fractions are between 0 and 1. After subtracting bi the

remaining fraction is inverted to find xi+1. As a point of reference, we have approximated

so far that
√

1353 ≈ 36 + 1
1+ 1

3

. SQUFOF stops here because 16 is a perfect square. Taking

the conjugate of the top and the square root of the bottom, we obtain:

x′
0 =

√
1353 + 27

4
= 15 +

√
1353− 33

4

x′
1 =

4√
1353− 33

=

√
1353 + 33

66
= 1 +

√
1353− 33

66
(3)

Here, since the residue 33 is repeated, we quickly find that 33 is a factor of 1353. 1353 =

33 · 41 = 3 · 11 · 41. The explanation of this can be seen by applying cross multiplication of

the two fractions on the left of (3) and simplifying. This produces the equation N − P 2
i =
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1353 − 332 = 4 · 66 = QiQi+1, as in (a) of Theorem 1 in section 6. Since the residue

Pi = Pi+1 = 33 is repeated, it must have a factor in common with the pseudo-square

Qi+1 = 66, because of the recurrence relation Pi+1 = bi+1Qi+1 − Pi in (b) of Theorem 1

below. This common factor must then also divide 1353.

Shanks also showed that the second part
(a, b,−c) is the quadratic form

to be composed with itself
(a′, b′,−c′) is the result
a′ ← a2

f ← b2−N
2·b

Reduce f to least terms p
q

b′ ← b− f (mod a′)

c′ = N−b2

a

Result: (a′, b′,−c′)

Figure 2: Simple variation of composition of
quadratic forms

of SQUFOF (the process of finding a factor-

ization once the perfect square has been found)

is linear using a process called composition of

quadratic forms. Composition of quadratic

forms has several different definitions. Origi-

nally, Gauss defined it as the process of multi-

plying two quadratic forms together and mak-

ing a substitution to reduce the product to

another quadratic form [Ga]. Therefore, I will use the multiplication symbol (∗) for compo-

sition. However, this computation is slow and complicated. Shanks developed an approxi-

mation to this that relies on an extended Euclidean algorithm and the Chinese remainder

theorem (Figure 2). This is much faster and simpler and is useful for a variety of theoretical

reasons. Shanks also developed two algorithms for performing a partial reduction before the

composition was completed: NUCOMP and NUDUPL. NUCOMP composes two different

quadratic forms while NUDUPL composes a quadratic form with itself [S]. These algorithms,

although slightly faster, are too complicated to explain here.

From the second line of (2), observe that 212 + 57 · 16 = 1353. The quadratic form for

this step would be 57x2 +2 ·21xy−16y2, abbreviated (57, 21,−16). In general, the quadratic

form for each step is (Qi−1, Pi,−Qi). Given a quadratic form (a, b,−c), setting x′
0 =

√
N−b
a

returns to the continued fraction expansion. The result of composition is another quadratic

form similarly related to somewhere else in the continued fraction expansion. Regardless of
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the composition algorithm chosen, the results are within several steps of each other in the

continued fraction expansion.

The results of composition are still often outside the bounds normally obtained in the

continued fraction expansion, so it is often necessary to reduce this product further. Shanks

followed an algorithm designed by Gauss that uses substitutions. However, this algorithm

also sometimes reverses the direction of the quadratic form, a trait that is undesirable for

this research for reasons that will become apparent later, so quadratic forms will instead

be converted back into a step in the continued fraction expansion in order to reduce them.

For example, if we compose (57, 21,−16) with itself using NUDUPL, we obtain (31, 50, 37).

In order to reduce this, we write out the step in the expansion that it would represent and

proceed from there:

31√
1353− 50

=

√
1353 + 50

−37
= −3 +

√
1353− 61

−37

−37√
1353− 61

=

√
1353 + 61

64
= 1 +

√
1353− 3

64

64√
1353− 3

=

√
1353 + 3

21
= 1 +

√
1353− 18

21

21√
1353− 18

=

√
1353 + 18

49
= 1 +

√
1353− 31

49

In the fourth step, 0 < 49 < 2
√

N ≈ 73, 0 < 18 <
√

N ≈ 36, and
√

N − 18 < 49, so that

the quadratic form is completely reduced4. The new quadratic form is found from the fourth

step to be (21, 18,−49). This same step could be found in the 7th step of the continued

fraction expansion if composition of quadratic forms were not used. The number of terms

skipped is larger for a quadratic form farther down in the expansion and can be roughly

approximated, so that if it is known which step in the process is desired, composition of

quadratic forms gets close enough that the answer can be quickly found. Although the first

4As described in Theorem 1, the conditions are: 0 < Qi < 2
√

N , 0 < Pi−1 <
√

N , and
√

N − Pi−1 < Qi.
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phase of Shanks’ SQUFOF algorithm, the process of finding a perfect square, still requires

exponential time, the total time is roughly cut in half [Rie].

2 Current Research

There are a few important observations about Shanks’ SQUFOF algorithm. First, in the

original continued fraction expansion, we started with pseudo-square Q0 = 1. However, it is

possible to start with any integer Q0 such that N is a quadratic residue of Q0, so that P0 can

be found such that P 2
0 ≡ N (mod Q0). If we choose Q0 = 2, and P0 =

⌊√
N

⌋

or
⌊√

N
⌋

−1,

such that P0 is odd, then we have x0 − b0 =
√

N−P0

Q0
. In Theorem 2 of section 6, I prove that

if N ≡ 1 (mod 4) and −1 is not a quadratic residue, then this sequence of pseudo-squares

and residues will provide a factorization of N . However, this is not a complete description

of the numbers that this sequence provides a factorization for. For example, for N = 35,

a factorization is immediate when we evaluate b
√

Nc = 5, even though 35 ≡ 3 (mod 4)

and 377, for which a factor of 13 is found on the 2nd step but for which −1 is a quadratic

residue.

Figure 3 provides an example of applying
N = 1333

⌊√
1333

⌋

= 36
Q0 ← 2 P0 ← 35

2√
1333−35

=
√

1333+35
54

= 1 +
√

1333−19
54

54√
1333−19

=
√

1333+19
18

= 3 +
√

1333−35
18

18√
1333−35

=
√

1333+35
6

= 11 +
√

1333−31
6

6√
1333−31

=
√

1333+31
62

= 1 +
√

1333−31
62

Since the residue 31 is repeated,
it is a factor. 1333 = 31 · 43.

Figure 3: example of first shortcut

this shortcut normally. Although performing

SQUFOF without the shortcut would take

about the same number of steps in this ex-

ample, the time saved is more significant for

many other numbers. Also observe that if we

continue the expansion after the factorization

is obtained, the sequences repeat, except in

the opposite order and paired differently (Figure 4). After inverting, this last fraction will

be the same as the fraction we started with, so the entire process repeats from here. Lemma

3 defines this symmetry more explicitly.
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Based on this symmetry, any fast test to
62√

1333−31
=

√
1333+31

6
= 11 +

√
1333−35

6
6√

1333−35
=

√
1333+35

18
= 3 +

√
1333−19

18
18√

1333−19
=

√
1333+19

54
= 1 +

√
1333−35

54
54√

1333−35
=

√
1333+35

2
= 35 +

√
1333−31

2

Figure 4: example of symmetry

determine whether or not the continued frac-

tion expansion is in the correct direction, that

is, whether or not it has not passed the fac-

torization yet, would provide a faster factor-

ization algorithm by performing a binary search (Figure 5).

Given N to be factored:
Verify conditions on N .

Q0 ← 2, P0 ← b
√

Nc or
⌊√

N
⌋

− 1, such that P0 is odd.

Apply equation (1) for 2 steps.
F0 ← quadratic form from 2nd step of continued fraction expansion
i← 0
while Fi is in the right direction

Fi+1 ← Fi ∗ Fi

i← i + 1
Flast ← Fi−1

while i ≥ 0
if Flast ∗ Fi is in the right direction

Flast ← Flast ∗ Fi

i← i− 1
Convert Flast to a continued fraction step and use equation 1

to expand several steps to obtain the factorization.

Figure 5: intended algorithm using quadratic forms to perform a binary search of the con-
tinued fraction expansion

I provide one example of this algorithm:

N = 2035153, Q0 = 2, P0 = 1425

Letting the indices refer to the related step in the standard continued fraction expansion we

obtain5: F2 = (1132, 839,−294).

We proceed by using NUDUPL to perform composition of quadratic forms, reducing the

results by use of the continued fraction expansion.

5Due to the change from Q0 = 1 to Q0 = 2, the general form for the quadratic form is now
(Qi−1/2, Pi,−Qi/2)
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F2 ∗ F2 = (696, 1399,−28) = F11

F11 ∗ F11 = (81, 1403,−206) = F27

F27 ∗ F27 = (739, 545,−588) = F55

F55 ∗ F55 = (696, 457,−656) = F119

F119 ∗ F119 = (576, 1207,−251), which is in the wrong direction.

F119 ∗ F55 and F119 ∗ F27 are reversed.

F119 ∗ F11 = (24, 1415,−343) = F135

F135 ∗ F2 = (246, 1019,−1013) = F140

Converting back to continued fractions:

2 · 246√
N − 1019

=

√
N + 1019

2026
= 1 +

√
N − 1007

2026

2026√
N − 1007

=

√
N + 1007

504
= 4 +

√
N − 1009

504

504√
N − 1009

=

√
N + 1009

2018
= 1 +

√
N − 1009

2018

we obtain the factor 1009: 2035153 = 1009 · 2017

The decisions for this example of whether or not a form was reversed were determined by

merely comparing with the actual continued fraction expansion. However, ideally this can

be done without doing the entire expansion.

I conjecture based on empirical evidence that in the process of expanding the continued

fraction expansion that if Qi|Qi−1, (Qi)
3 - Qi−1, and Qi is not a power of 2, then the contin-

ued fraction expansion is in the correct direction, that is, it has not passed the factorization

yet. If (Qi)
3|Qi−1 or Qi is a power of 2, no information is provided. As an intuitive expla-

nation of where this conjecture comes from, observe that this always happens in Shanks’

SQUFOF algorithm if you reverse the step (same as not taking the conjugate of the numer-

ator according to Lemma 2). In the first example, if we had ignored 16 we would have found

49 on the 8th step, with x8 − b8 =
√

1353−31
49

. Taking the square root of 49 and not taking
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the conjugate of the numerator, and then inverting, we obtain 7√
1353−31

=
√

1353+31
56

, so that

Q′
0 = 7, Q′

−1 = 56 and 7 | 56.

The condition that Qi|Qi−1 is extremely rare, but it is possible to find a multiple k such

that in the expansion with Qi unchanged, Pi replaced by kPi and N replaced by k2N , this

condition is met. For notation, let Qi = Q′
0. Since using −k instead of k produces the

same sequence in the opposite direction, it is necessary to relate this sequence to the original

sequence in order to extract useful information. From this, I have found so far that if Qi+3|Q′
1

and Q′
0|Q′

−1, then the original expansion is in the correct direction. Finding multiples such

that the second condition is satisfied can be accomplished by using continued fractions to

find the convergents of
√

N−Ri

Q2
i

, where Ri ≡
√

N ≡ Pi − P 2
i −N

2Pi
(mod Q2

i ).

Although most of the multiples do not cause the sequence to satisfy the first condition,

it empirically appears to be possible roughly 2% of the time, regardless of the size of N . If

this is true, even this crude result could provide a polynomial time factorization algorithm, a

very significant discovery, by merely attempting the test an average of 50 times for each test.

Thus, the runtime would be roughly c(log N)c′ . However, polynomial time factorization could

be possible even without this frequency of response, since all that is required for polynomial

time factorization is that the time required for this test of direction be a polynomial function

of the number of digits. In other words, the frequency with which the test provides an answer

needs to be bounded below by the reciprocal of a polynomial. Even if this were not possible,

it is hopeful that the algorithm would provide a valuable tool to number theory.

3 Proposed Research

My primary goal is to obtain an analysis of the average case runtime. However, in order to

obtain this, I will need some preliminary results.

First, I intend to investigate more fully the conditions for which the sequence of pseudo-

squares and residues will provide a factorization. A set of numbers that I can prove this
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algorithm does not work on would be extremely valuable for security purposes. Second,

I intend to investigate the connection with quadratic forms more fully. Although Shanks

assumed it to be true and probably had a proof, I have not yet seen a formal proof that

the composition of two quadratic forms is another quadratic form in the same continued

fraction expansion, an especially interesting fact considering the usual necessity of reducing

the result. Third, I intend to investigate the conjecture that the test of direction is accurate.

If it were possible to prove these, the proofs would provide valuable information for assessing

the algorithm as it currently stands, provide valuable insight into possible improvements,

and provide a base of information about continued fractions that someone else could build

on later.

Second, I intend to analyze the ability to perform a test of direction, specifically whether

the frequency changes with larger choices of N and how the time required for this test

changes. This combined with proofs or at least good arguments for the other conjectures

will provide for an analysis of average runtime. This will determine how serious of a threat

it poses to the RSA system. I intend to use C++ both to research the algorithm and to

produce a working implementation of the algorithm.

4 Proposed Timeline

February 2004 - April 2004

I will investigate the conditions for which this algorithm provides a factorization. In

Theorem 2, I have already proved that the algorithm works for a significant number of

integers6, but I still need to research more fully what integers it does and does not work on

and a more thorough explanation of why. I will continue researching the work done by Daniel

Shanks, specifically attempting to obtain a copy of an incomplete paper in which he describes

SQUFOF in more detail [W], hopefully explaining in some detail where he originally got his

6Integers N such that N ≡ 1 (mod 4), but such that −1 is not a quadratic residue compose at least 1/4
of the non-prime odd integers.
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idea and why it works. This should provide some light into the rest of the project.

May 2004 - July 2004

I will investigate the connection between quadratic forms and continued fractions. I will

begin by seeking for some characteristic of a quadratic form that distinguishes the continued

fraction that it occurs in. In addition to providing a formal proof that a binary search is

possible, this research is likely to also shed some light on the test of direction itself.

August 2004 - October 2004

I will investigate the conjecture that the first part of the test of direction is accurate, the

relatively simple case when the condition Qi|Qi−1 is met. I will first search for counterex-

amples. If I am able to find any, I will analyze what goes wrong. From this, I will modify

the conditions if necessary. I will also investigate the connection back to SQUFOF. Either

way, I believe that a proof by induction on i, the index of the pseudo-squares, should be

possible. In mid October, I will begin work on the mid-term report in order to finish it by

the beginning of December.

November 2004 - December 2004

I will investigate the second part of the test of direction, the case when a multiple k is

used and the condition that Qi+3|Q′
1 is met. I will first analyze to what extent Qi+5 and

Qi+7 relate similarly. This will either provide an insight into how Qi+3 is distinct or how the

entire sequence may be related to the original sequence. I will attempt a proof, but I believe

that in the process of developing a proof, I will discover that it is possible to achieve this

test some other way.

In December, I will finish the mid-term report and begin working on the final write-up.

January 2005 - February 2005

I will analyze the frequency with which a test of direction may be performed. At this

point, it is possible that the approach to testing direction may be entirely changed by dis-

coveries through the earlier proofs. However, regardless of how the test is done, I will first
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use significant computer time conducting this analysis. From this, I will analyze which num-

bers have a higher or lower frequency and attempt to understand the variations. Also, I

will attempt to understand the characteristics of pseudo-squares that do provide for a test

of direction. With this understanding, I should be able to produce proof of this frequency,

which will then provide a complete analysis of runtime.

I will continue inserting this information into my final write-up.

March 2005 - May 2005

I will complete the final write-up for the Trident Scholar Committee and produce a

running computer implementation of the algorithm.

5 Glossary

Conjugate: changes the sign of a certain term in an expression, traditionally the part of

an expression that is either irrational or imaginary. For this research, it applies to changing

the sign of a residue, the integer part of the numerator of an xi in the continued fraction

expansion.

Cryptography: set of methods for encrypting information to prevent it from being read

by anyone who intercepts the messege. Used in variety of civil and military applications.

Euclid’s Algorithm: fast algorithm for determining the greatest common divisor of two

integers. Given x and y, the extended Euclidian algorithm also determines the coefficients

a and b such that ax + by = gcd(x, y).

Floor: greatest integer less than or equal to a given number. Symbol: bxc

Greatest Common Divisor: largest integer that divides a pair or group of integers.

Symbol: gcd(x, y)

Modular Arithmetic: two numbers are considered equal (congruent) if heir difference

is divisible by the base. Thus, 3 ≡ 10 (mod 7). Numbers are represented by integers

between 0 and N − 1, where N is the base. Multiplication, addition, and subtraction are
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normal, except that the results are reduced. Division is performed by reducing fractions to

least terms, applying an extended Euclid’s algorithm to find the inverse of the denominator,

and then performing multiplication. Symbol: (mod N)

Modulo: operation related to division that returns the remainder:

73
11

= 6 7
11

, so 73 modulo 11 = 7. Symbol: % or (mod N)

NUCOMP-NUDUPL: algorithms designed by Daniel Shanks to perform composition

of quadratic forms quickly.

Perfect Square: integer that is the square of another integer. Thus, 9 is a perfect

square because 32 = 9.

Pseudo-square: the denominator of an xi in the continued fraction expansion, denoted

Qi. When Q0 = 1, (−1)iQi is a quadratic residue and in general −QiQi−1 is a quadratic

residue.

Quadratic Reciprocity Law (Gauss): determines which numbers are quadratic residues

of a prime:

Symbol: (a
p
) = 1 if x2 ≡ a (mod p) has a solution, −1 if it does not, and 0 if p | a.

Theorem: For p and q distinct primes:

(
p

q
)(

q

p
) = (−1)(p−1)(q−1)/4

(
2

p
) = (−1)(p2−1)/8

(
−1

p
) = (−1)(p−1)/2

Quadratic Residue: a perfect square modulo some base N . 2 is a quadratic residue of

7 because 32 ≡ 2 (mod 7).

Relatively Prime: having no common divisors. Thus, 8 and 15 are relatively prime,

even though they are not prime by the normal definition.

Residue: integer that remains in the numerator after bi has been subtracted from xi in
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the continued fraction expansion.

RSA: cryptology algorithm named after Rivest, Shamir, and Adleman. It was earlier

developed by Clifford Cooks of GCHQ, but this was only recently declassified. Its security

is dependent on the difficulty of factorization [E].

SQUFOF: Square Forms Factorization, developed by Daniel Shanks in 1982.

6 Proofs

Throughout, we will assume that N , the odd positive integer to be factored, is not a perfect

square and that N ≡ 1 (mod 4). Also, we are assuming that x0 =
√

N+P0

2
, where P0 =

b
√

Nc or b
√

Nc− 1, such that P0 is odd. Note that with this definition, 0 < x0−P0 < 1, so

that P0 = b0. Also note that we have defined by this that Q0 = 2. The recursive formulas

are:

xi+1 =
1

xi − bi

bi = bxic, i ≥ 0

Formally, the equation we are assuming is:

xi+1 =
Qi√

N − Pi

=

√
N + Pi

Qi+1

= bi+1 +

√
N − Pi+1

Qi+1

, i ≥ 0 (4)

Note that this equation serves as a definition of Qi, Pi, Qi+1, and Pi+1, so that these

equations are true regardless of the conditions on these variables.

Theorem 1 In the continued fraction expansion, each xi reduces to the form
√

N+Pi−1

Qi
, with

(a) N = P 2
i +QiQi+1, (b) Pi = biQi−Pi−1, (c) bi > 0, (d) 0 < Pi <

√
N , (e) 0 < Qi < 2

√
N ,

(f) Qi is an integer. Furthermore, (g) this sequence is eventually periodic [Rie].

Proof:

(a) From (4), the equation Qi√
N−Pi

=
√

N+Pi

Qi+1
requires that N = P 2

i + QiQi+1.

(b) It is evident from simplifying the expression on the far right of 4 that
√

N+Pi

Qi+1
=

√
N+bi+1Qi+1−Pi+1

Qi+1
. Therefore, we have that Pi = biQi − Pi−1.
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(c) For i = 0, b0 = P0 > 0.

For i > 0, bi−1 = bxi−1c. By the definition of floor, we then have that xi−1 − 1 < bi−1 ≤

xi−1. If bi−1 = xi−1, then the continued fraction expression formed by the sequence (bi) is a

rational expression equal to x0 =
√

N+P0

2
, which is irrational since N is not a perfect square,

providing a contradiction. Therefore, xi−1 − 1 < bi−1 < xi−1, so that 0 < xi−1 − bi−1 < 1.

Therefore, xi = 1
xi−1−bi−1

> 1, so that bi = bxic ≥ 1 > 0.

(d-e) I will prove inductively that 0 < Qi < 2
√

N and 0 < Pi−1 <
√

N .

Base case: i = 1

P0 = b
√

Nc or b
√

Nc − 1, so by definition 0 < P0 <
√

N .

Q1 =
N−P 2

0

2
> 0. Also, 1 =

N−P 2
0

2Q1
=

√
N−P0

2

√
N+P0

Q1
. Since

√
N−P0

2
< 1, we must have

√
N+P0

Q1
> 1, so that Q1 <

√
N + P0 < 2

√
N .

Induction: Assume 0 < Qi < 2
√

N and 0 < Pi−1 <
√

N .

From (c), 0 < xi−bi < 1 means 0 <
√

N−Pi

Qi
< 1. Since Qi > 0, we can say 0 <

√
N−Pi <

Qi. From the left side of this, we have that Pi <
√

N . Now, either Qi ≤
√

N or Qi >
√

N .

Case 1: If Qi ≤
√

N , then
√

N − Pi < Qi ≤
√

N , so that Pi > 0.

Case 2: If Qi >
√

N , then by (b), Pi = biQi − Pi−1 > bi

√
N −

√
N = (bi − 1)

√
N > 0.

Therefore, 0 < Pi <
√

N .

By (a), Qi+1 =
N−P 2

i

Qi
. Since 0 < Pi <

√
N , N − P 2

i > 0, so since also Qi > 0, we have

that Qi+1 > 0.

1 =
N−P 2

i

QiQi+1
=

√
N−Pi

Qi

√
N+Pi

Qi+1
. Since

√
N−Pi

Qi
< 1, we must have that

√
N+Pi

Qi+1
> 1. Since

Qi+1 > 0, this implies Qi+1 <
√

N + Pi < 2
√

N .

(f) The fact that N = P 2
i + QiQi+1 requires that Qi+1 =

N−P 2
i

Qi
. In order to show that

∀i Qi is an integer, I will prove by induction that Qi is an integer and Qi | N − P 2
i .

Base case: i = 0

N and P0 are odd by their definitions, so N−P 2
0 is even, so that 2 | N−P 2

0 . But Q0 = 2,

so the statement is true for i = 0.

Induction: Assume for some i, Qi is an integer and Qi | N − P 2
i . Then, since N =

17



P 2
i + QiQi+1, Qi+1 =

N−P 2
i

Qi
, so that since Qi | N − P 2

i , Qi+1 is an integer. Also, Qi =
N−P 2

i

Qi+1
,

so that since Qi is an integer, Qi+1 | N − P 2
i . Since Pi+1 = bi+1Qi+1 − Pi,

N − P 2
i+1 = N − (bi+1Qi+1 − Pi)

2 = N − b2
i+1Q

2
i+1 + 2bi+1Qi+1Pi − P 2

i

= (N − P 2
i )− b2

i+1Q
2
i+1 + 2bi+1Qi+1Pi

Since Qi+1 | N − P 2
i and Qi+1 | −b2

i+1Q
2
i+1 + 2bi+1Qi+1Pi, we have that Qi+1 | N − P 2

i+1

and the induction is complete.

(g) Since each xi and thus the entire sequence that follows it is defined by the two integers

Qi and Pi−1, limited by the bounds 0 < Qi < 2
√

N and 0 < Pi <
√

N , there is only a finite

number of distinct xi’s. Therefore, for some m and some k, ∀i ≥ k xi = xi+m. QED

Lemma 1

b
√

N + Pi

Qi

c = b
√

N + Pi−1

Qi

c = bi

Proof: The second part of this equation, that b
√

N+Pi−1

Qi
c = bi follows from the definition

of bi.

In order to show that b
√

N+Pi

Qi
c = b

√
N+Pi−1

Qi
c, I will first show that

√
N + Pi

Qi
> 1.

Assume the contrary, that Qi ≥
√

N + Pi. Then,

bi(
√

N + Pi)− Pi ≤ biQi − Pi = Pi−1 <
√

N,

bi

√
N + Pi(bi − 1) <

√
N,

18



√
N(bi − 1) + Pi(bi − 1) < 0,

(bi − 1)(
√

N + Pi) < 0.

But
√

N and Pi are positive, so this implies bi < 1, contradicting the fact that bi > 0, since

bi must be an integer. Therefore,

Qi <
√

N + Pi,

√
N + Pi

Qi

> 1

From this, we find that Qi+1 =
√

N−P 2
i

Qi
= (

√
N+Pi)(

√
N−Pi)

Qi
>
√

N − Pi. Therefore,

b
√

N + Pi

Qi
c = b

√
N + biQi − Pi−1

Qi
c = bi + b

√
N − Pi−1

Qi
c = bi. QED

Lemma 2 If xi − bi =
√

N−Pi

Qi
and xi+1 = 1

xi−bi
= bi+1 +

√
N−Pi+1

Qi+1
and if we assign y0 =

√
N+Pi+1

Qi+1
, then c0 = by0c = bi+1 and y1 = 1

y0−c0
=

√
N+Pi

Qi

Proof: By Lemma 1, c0 = by0c = b
√

N+Pi+1

Qi+1
c = bi+1

y1 =
1

y0 − c0
=

1
√

N+Pi+1

Qi+1
− bi+1

=
1

√
N+Pi+1−bi+1Qi+1

Qi+1

=
1

√
N−Pi

Qi+1

=

√
N + Pi

N−P 2
i

Qi+1

=

√
N + Pi

Qi
QED

This demonstrates an important fact about continued fractions, the fact that the direction

of the sequences of pseudo-squares and residues can be reversed (i.e the indices decrease)

by taking the conjugate and applying the same recursive mechanism. Thus, if the starting

condition near some point is the same in both directions, the sequence will be symmetric

about that point. This is the point of Lemma 3. Note that this lemma implicitly uses the

fact there is only one odd integer P0 such that 0 <
√

N − P0 < 2

Lemma 3 Let negative indices represent pseudo-squares found using the reversal of direction
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defined in Lemma 2. The sequence of pseudo-squares is symmetric about Q0 = 2, so that,

using this notation ∀i Qi = Q−i.

Proof: Let y−1 =
√

N+P1

Q1
. Then, by Lemma 2, y0 =

√
N+P0

Q0
=

√
N+P0

2

However, this is the same as x0, so the sequence of pseudo-squares will be symmetric

about Q0 = 2. Therefore, Qi = Q−i. QED

Combining periodicity with reversibility, we can make a slightly stronger statement about

periodicity.

Lemma 4 There exists a positive integer m such that ∀i xi = xi+m, i not necessarily positive.

Proof: Essentially, I need to prove that in Theorem 1 (g), there is no lower bound for k.

Assume the contrary, that there is some lower bound k. Let m and k as in Theorem 1 (g)

such that m is the smallest such positive integer and k is the smallest such integer, assuming

it exists. Then xk = xk+m. But by Lemma 2 we have that xk−1 = xk+m−1, so that k− 1 also

meets this criteria, violating the assumption that k is the smallest such integer. Therefore,

∀i xi = xi+m. QED

Based on the symmetry about Q0 = 2, we are able to show that there is another point

of symmetry.

Lemma 5 Let s = bm
2
c, where m is the period from Lemma 4. If m is even, ∀i Qs+i = Qs−i,

but Qs 6= 2. If m is odd, ∀i Qs+i+1 = Qs−i.

Proof:

Case 1: If m is even, m = 2s. Then, by Lemmas 3 and 4, Qs+i = Q−s−i = Q2s−s−i = Qs−i.

If Qs = 2, xs =
√

N+P0

2
since P0 is the only odd integer such that 0 <

√
N − P0 < 2,

so that s is a shorter period than m, contradicting the fact that m is the smallest positive

integer such that ∀i Qi = Qi+m. Therefore, Qs 6= 2.
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Case 2: If m is odd, m = 2s + 1. Then, by Lemma 3 and 4, Qs+i+1 = Q−s−i−1 =

Q2s+1−s−i−1 = Qs−i. QED

The symmetry about this other point provides the mechanism for being able to find this

point. Theorem 2 provides the importance of being able to find this point.

Lemma 6 ∀i Qi is even.

Proof: I will prove by induction that if α is chosen such that 2α ‖ Qi, then 2α+1 | N−P 2
i .

Base case: i = 0

21 ‖ Q0, so α = 1.

N ≡ 1 (mod 4) and P0 is odd, so 4 | N − P 2
0 , but then 4 = 22 = 2α+1.

Induction: Given 2α ‖ Qi and 2α+1 | N − P 2
i .

Choose r such that 2r ‖ N − P 2
i . Then r > α. Let β = r − α. Choose L such that

N − P 2
i = 2rL. Choose M such that Qi = 2αM . Since Qi | N − P 2

i , M | N − P 2
i . But since

M is odd, gcd(M, 2a) = 1, so that M | L. Let W = L
M

.

Therefore, Qi+1 =
N−P 2

i

Qi
= 2rL

2αM
= 2r−α L

M
= 2βW , with W odd, so that 2β ‖ Qi+1.

N − P 2
i+1 = N − (bi+1Qi+1 − Pi)

2 = N − b2
i+1Q

2
i+1 + 2bi+1Qi+1Pi − P 2

i

= (N − P 2
i )− b2

i+1Q
2
i+1 + 2bi+1Qi+1Pi

2r | N − P 2
i and r = α + β > β, so 2β+1 | N − P 2

i .

22β | Q2
i , so since β > 0, 2β > β, so 2β+1 | b2

i+1Q
2
i+1

2β | Qi, so 2β+1 | 2bi+1Qi+1

Therefore, 2β+1 | N − P 2
i+1 and the induction is complete. QED

In Theorem 2, note that if N ≡ 1 and N is prime, Gauss’s quadratic reciprocity law

states that −1 is a quadratic residue of N . Alternately, this theorem could be used as a

proof of that portion of quadratic reciprocity.
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Theorem 2 If N ≡ 1 (mod 4) and −1 is not a quadratic residue of N , if s is as in Lemma

5, gcd(Qs, N) is a nontrivial factor of N .

Proof: Let s be as in Lemma 5.

Case 1: m is even, choose i = 1. Qs+1 = Qs−1. Since Qs+1 = N−P 2
s

Qs
and Qs−1 =

N−P 2
s−1

Qs
,

this simplifies to P 2
s = P 2

s−1, but since ∀i Pi > 0, this provides Ps = Ps−1.

But Ps = bsQs − Ps−1 = bsQs − Ps, so 2Ps = bsQs. If gcd(Ps, Qs) = 1, Ps | bs, so that

bs ≥ Ps, so that Qs = 2Ps

bs
≤ 2. But this contradicts the fact that Qs is even by Lemma 5

and Qs 6= 2 by Lemma 4.

Therefore, gcd(Ps, Qs) > 1. Let d = gcd(Ps, Qs). Then, since N = P 2
i + QiQi−1 and

d | Pi and d | Qi, d | N . Since also d > 1, d is a nontrivial factor of N .

Case 2: m is odd. Choose i = 0. Qs+1 = Qs. N = P 2
s+1 + QsQs+1 = P 2

s+1 + Q2
s, so that

P 2
s+1 ≡ −Q2

s (mod N). If gcd(Qs, N) > 1, this is a nontrivial factor of N , and we are done.

Therefore, assume that Qs and N are relatively prime, so that Q−1
s (mod N) exists. Then

we have (Q−1
s )2P 2

s+1 ≡ −1 (mod N). But then Q−1
s Ps+1 is a square root of −1 modulo N ,

contradicting the fact that −1 is not a quadratic residue of N . Therefore, a nontrivial factor

of N is found at s. QED
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